凝集 topos
cohesive topos
cohesive topos in nLab
初等 topos$ \cal E,S と幾何學的射$ f^*\dashv f_*:{\cal E}\xrightleftarrows[f^*]{f_*}{\cal S} について、$ \cal Eが stably locally connected topos かつ local topos であれば$ \cal Eを凝集 topos と言ふ。$ \cal Sは$ \cal Eの base topos と言ふ
stably locally connected topos in nLab
local geometric morphism in nLab#Local topos
隨伴 (函手)列$ f_!\dashv f^*\dashv f_*\dashv f^!が在る
$ f_!:{\cal E}\to{\cal S}但し有限積を保存する
$ f^*:{\cal E}\hookleftarrow{\cal S}逆像部分
$ f_*:{\cal E}\to{\cal S}直像部分
$ f^!:{\cal E}\hookleftarrow{\cal S}
これは以下の隨伴 (函手)列を誘導する
$ (f^*\circ f_!)\dashv(f^*\circ f_*)\dashv(f^!\circ f_*):{\cal E}\to{\cal E}
$ (f_!\circ f^*)\dashv(f_*\circ f^*)\dashv(f_*\circ f^!):{\cal S}\to{\cal S}
$ (f^*\circ f_*\circ f^*\circ f_!)\dashv(f^*\circ f_*\circ f^!\circ f_*):{\cal E}\to{\cal E}
例
$ \Pi_0\dashv{\rm Disc}\dashv\Gamma\dashv{\rm coDisc}:{\cal E}\xrightarrow{\Gamma}{\cal S}
$ \Pi_0は聯結成分を取り出す函手
$ \Pi_nは n 次の homotopy 型 (shape) を取り出す
$ {\rm Disc}:{\cal S}\to{\cal E}は離散對象への函手
$ {\rm coDisc}:{\cal S}\to{\cal E}は餘離散對象への函手
これは以下の隨伴 (函手)列を誘導する
$ S\dashv\flat\dashv\sharp:{\cal E}\xrightarrow{\Gamma}{\cal S}\xrightarrow{\rm Disc}{\cal E}
$ S:{\cal E}\to{\cal E}={\rm Disc}\circ\Pi_0
shape modality in nLab
($ \KaTeXで ∫ を小さく書けないんだよな$ ∫$ \int)
$ \flat:{\cal E}\to{\cal E}={\rm Disc}\circ\Gamma
flat modality in nLab
$ \sharp:{\cal E}\to{\cal E}={\rm coDisc}\circ\Gamma
sharp modality in nLab
對象は凝集空閒 (cohesive space) と見做せる
譯語
cohesive in nLab
Cohesion - Wikipedia
凝集度 - Wikipedia
集団凝集性 - Wikipedia
集團凝集性
motivation for cohesive toposes in nLab
Francis William Lawvere "Cohesive Toposes -- Combinatorial and Infinitesimal Cases" 2008
Francis William Lawvere “Cohesive Toposes -- Combinatorial and Infinitesimal Cases” 2008
Cohesive Toposes -- Combinatorial and Infinitesimal Cases in nLab
凝集 (∞,1)-topos (cohensive (∞,1)-topos)
cohesive (infinity,1)-topos in nLab
cohesive (infinity,1)-topos -- structures in nLab
Cohesive ∞-Toposes | The n-Category Café
https://ncatlab.org/nlab/show/cohesive+site
https://ncatlab.org/nlab/show/infinity-cohesive+site
https://ncatlab.org/nlab/show/cohesive
https://ncatlab.org/nlab/show/differential+cohesive+(infinity%2C1)-topos
https://ncatlab.org/nlab/show/infinitesimal+cohesive+(infinity%2C1)-topos
https://ncatlab.org/nlab/show/tangent+cohesive+(∞%2C1)-topos